Carbon Measurements at ARM-SGP for OCO Validation

Marc L. Fischer¹, Sebastien C. Biraud¹, William J. Riley¹, Colm Sweeney², Margaret S. Torn¹

¹LBNL, ²NOAA-ESRL

MLFischer@lbl.gov, SCBiraud@lbl.gov

Outline

Overview of ARM Carbon Project
Carbon Measurements for OCO Validation
Initial Estimate of Column CO₂
Further Work

Goal of ARM Carbon project: Improve understanding of land-surface CO₂ climate forcing and ecosystem-climate feedbacks

Objectives

Apply observations, models, multiple tracers from ARM facilities to:

Quantify CO₂ sources, sinks, and concentrations in continental SGP

Measure and model land surface-atmosphere interactions and coupled C and water cycling

Support C4 models by providing parameters and data for testing Improve prediction of CO₂ effects on radiation and temperature

Coupled Land-surface and Atmospheric Processes

Patterns of Ecosystem Exchange

Heterogeneous Land Cover

Eddy Covariance Permanent at 4, 25, 60 m Portable (two) at 4 m

Heterogeneous CO₂ Flux

Modeling Spatiotemporal Variations in NEE

Trends in PBL CO₂

60 m tower at Central Facility and aircraft. Continuous, precise CO₂, CO, and radon. Flasks for ¹³C, ¹⁴C, and NOAA (CH4, N2O, SF6, ...)

Vertical Structure of CO₂ & CO

Weekly Cessna flights (AVP)

- 2006-present: NOAA flasks (CO₂, CO, CH4, N2O, SF6, ¹³CO₂, Halocarbon, VOC)
- 2007-present: periodic ¹⁴C flasks
- 2007-present: periodic continuous CO₂

Objectives for ARM Carbon research for OCO

Measure column CO_2 (χ_{CO2}) and compare with FTS and OCO retrievals

Apply in situ ground-based CO_2 measurements and ARM-AVP CO_2 profiles to determine χ_{CO2}

Estimate spatial variations in χ_{CO2} not sampled by OCO

Apply predictions of χ_{CO2} from coupled land-surface atmosphere model

Estimate cloud and aerosol bias in χ_{CO2}

Apply ARM surface and remote sensing assets to OCO and FTS retrieval residuals

Initial Estimate of Column CO₂

- Example CO₂ profile
 - Combines tower and aircraft measurements (CO₂, P, T, RH)
 - Max altitude 60kPa(~ 0.4 of total column)
 - Fall season columnaverage CO₂ ~ 10 ppm lower than 60m CO₂ (394 ppm)
 - Spring season shows opposite gradients

Time series of 60kPa column average CO₂

- Current data set includes
 ~ 100 profiles
 - Fewer afternoon (green)
 measurements
- Amplitude of seasonal cycle ~ 6 ppm
- Error analysis in progress
- 2008 data available soon
 - Many flights only reached
 70 kPa
 - New contract will provide flights to ~ 50 kPa

Partial-column average CO₂

Further Work

- Complete processing of 2008 data
 - Analysis of pressure and water vapor errors
 - Comparison of measured profiles with FTS algorithm
 - Comparison of FTS retrieval with in-situ column estimate
- Identification and integration of additional ARM data for data classification
 - Cloud cover, aerosol depth
- Modeling investigation of expected spatial variability in column CO₂